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SUMMARY

Identical components are considered, which become obsolete once new-type ones are available, more
reliable and less energy consuming. We envision different possible replacement strategies for the old-type
components by the new-type ones: either purely preventive, where all old-type components are replaced as
soon as the new-type ones are available; either purely corrective, where the old-type ones are replaced by
new-type ones only at failure; or a mixture of both strategies, where the old-type ones are first replaced
at failure by new-type ones and next simultaneously preventively replaced after a fixed number of failed
old-type components.

To evaluate the respective value of each possible strategy, a cost function is considered, which represents
the mean total cost on some finite time interval [0, t]. This function takes into account replacement costs,
with economical dependence between simultaneous replacements, and also some energy consumption
(and/or production) cost, with a constant rate per unit time.

A full analytical expression is provided for the cost function induced by each possible replacement
strategy. The optimal strategy is derived in long-time run. Numerical experiments conclude the paper.
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1. INTRODUCTION

We here consider identical and independent components, which may be part of a single industrial
equipment or dispatched in different locations, indifferently. Those components are degrading with
time, and their random lifetimes follow some common general distribution. We assume that at some
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222 S. MERCIER

fixed time, say time 0, some new components appear in the market, issued from a new technology,
which makes them more reliable, less energy consuming and more performing. Such new-type of
components may be substituted to the older ones with no problem of compatibility. There is no
stocking of old-type components and after time 0, no old-type component is available anymore (or
the industrialist is not allowed to use old-type components anymore, e.g. for safety reasons). After
time 0, any failed component, either old-type or new-type, is then instantaneously replaced by a
new-type one. At time 0, each old-type component is in use since some random time, with some
random remaining lifetime. If the new-type components are much less energy consuming than the
older ones and if the period of interest is very long, it may then be expedient to remove all old-type
components immediately at time 0 and replace them by new-type ones, leading to some so-called
purely preventive replacement strategies. On the contrary, in case there is no much improvement
between both technologies and if the period of interest is short, it may be better to wait until the
successive failures of the old-type components and replace them by new-type ones only at failure,
leading to some purely corrective replacement strategy. More generally, some mixture of both
strategies, preventive and corrective, may also be envisioned and may lead to lower costs, as can
be seen later. The point of the present paper is to look for the optimal replacement strategy among
the purely preventive one, the purely corrective one and the mixtures of both strategies envisioned
here. To evaluate the respective value of each possible strategy, a cost function is considered,
which represents the mean total cost on some finite time interval [0, t]. This function takes into
account replacement costs, with economical dependence between simultaneous replacements (see
[1]), and also some energy consumption (and/or production) cost, with a constant rate per unit
time.

Looking at the published literature, it seems that a similar model as ours has not been considered
very often yet. Indeed, lots of papers dealing with obsolescence are mainly concerned with problems
of stock sizing and/or inventory policy (see [2–7], and references therein). In such papers, different
changes in technology are envisioned, which may arrive randomly, with a degree of innovation,
which may be random too. The demand for removing items from the stock may arrive at a
constant rate or randomly, with eventual random size too. The problem is then to optimize the
stock, which should not be too high because of eventual depreciation of stocked components due
to obsolescence, but which should not be too low either, because of eventual shortage inducing
additional costs. Such a problem is clearly very different from ours.

Other papers deal with some problem perhaps a little closer to ours ([8–15], and references
therein): technological breakthroughs are considered in such papers, which may be random, both
for their arrivals and/or for their degrees. The items usually degrade deterministically or even do
not degrade at all. The point in those papers is firstly to model the technological breakthroughs,
which is made diversely, and secondly to find an optimal replacement strategy in such an evolu-
tionary context, which evolves independently of the studied items. In the present paper, a single
technological breakthrough is considered, which is known to occur at time 0. The improvement due
to the technological change is also known with certainty. However, the components here degrade
stochastically with some general failure distribution. Also, an economic dependence is introduced
in the case of simultaneous replacements (details further). Our model hence appears as simpler for
the model of technological breakthrough but more sophisticated for the degradation of the items
and for the cost function.

A model taking into account some stochastic deterioration as well as technological change may
be found in [16]: an item is considered that degrades according to some discrete time Markov
chain. A single technological change is considered, which occurs randomly. Using minimizing
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technics from [17], an algorithm is developed to choose between two possible decisions: keep or
replace the item at initial time, according to some planned horizon. Here again, the model, as well
as the method and results, is very different from ours.

A similar model as here may, however, be found in [18, 19] in the case of constant failure rates
for both old-type and new-type components. Contrary to the present paper, all costs were beside
discounted at time 0 in both papers. In such a context, it had been proved in [19] that in the case of
constant failure rates, the only possible optimal strategies were either purely corrective or nearly
purely preventive (details further), leading to some simple dichotomous decision rule.

A first attempt to note whether such a dichotomy is still valid in the case of general failure rates
was done in [20] by Monte Carlo (MC) simulations. However, the length of the MC simulations
did not allow to cover a sufficient range for the different parameters, making the answer difficult.
Similarly, recent works [21, 22] proposed complex models including the present one, which are
evaluated by MC simulations. Here again, the length of the MC simulations added to the complexity
of the model does not allow to perform optimization on the replacement strategies.

The point of the present paper is hence to answer the following questions: Is the dichotomy
proved in the case of constant failure rates still valid in the case of general failure rates? If not
(and it will not), what are the possible optimal strategies? Finally, how can we find the optimal
strategy?

This paper is organized as follows: the model is specified in Section 2. Section 3 is devoted
to the analytical computation of the cost function entailed by each possible strategy on some
fixed finite horizon. The optimal strategy is derived for long-time run in Section 4. In particular,
it is analytically proved that the result from [19] is not valid anymore in the case of general
failure distributions: any envisioned strategy may here be optimal with respect to the cost func-
tion. Numerical experiments are lead on in Section 5, validating the results of Section 4 and
showing their interest even in the case of finite horizon. Concluding remarks end this paper in
Section 6.

2. THE MODEL—NOTATIONS AND ASSUMPTIONS

We consider n identical and independent old-type components (n�2). At time 0, such old-type
components are up, in activity. For each i=1, . . . ,n, the residual lifetime for the i th component
is assumed to be some absolutely continuous random variable (r.v.) Ui , where all Ui ’s are not
necessarily identically distributed. This means that the i th component is assumed to fail at time Ui .
The successive times to failure of the n old-type components then appear as the order statistics of
(U1, . . . ,Un). They are denoted by (U1:n, . . . ,Un:n) in the following, where U1:n< · · ·<Un:n almost
everywhere (a.e.) because Ui ’s admit density with respect to Lebesgue measure.

After time 0, any failed component, either old-type or new-type, is always instantaneously
replaced by a new-type one. All preventive replacements (by new-type components) are also
instantaneous.

The following replacement strategies are envisioned:

• Strategy 0: The n old-type components are immediately replaced by n new-type ones at time 0.
This is a purely preventive strategy. After time 0, there are exactly n new-type components.

• Strategy 1: No replacement is performed before the first failure, which occurs at time U1:n .
At time U1:n , the failed component is correctively replaced and the n−1 non-failed old-type
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components are simultaneously preventively replaced. This is hence a nearly purely preventive
strategy. Before time U1:n , there are exactly n old-type components. After time U1:n , there
are exactly n new-type components.

• Strategy K (1�K�n): No preventive replacement is performed before the K th failure, which
occurs at time UK :n . This means that only corrective replacements are performed up to time
UK :n (at times U1:n, . . . ,UK−1:n). At time UK :n , the failed component is correctively replaced
and the n−K non-failed old-type components are simultaneously preventively replaced.
Before time U1:n , there are exactly n old-type components. After time UK :n , there are exactly
n new-type components. For K�2, between times Ui :n and U−

i+1:n (1�i�K −1), there are i
new-type components and n−i old-type ones.

• Strategy n: No preventive replacement is performed at all. Before time U1:n , there are exactly
n old-type components. Between times Ui :n and U−

i+1:n (1�i�n−1), there are i new-type
components and n−i old-type ones. After time Un:n , there are exactly n new-type compo-
nents.

Once a new-type component is put into activity at time 0 or at time say Ui :n , it is next
instantaneously replaced at failure by another new-type component. The successive lifetimes of
such components are assumed to form a renewal process with eventual delay Ui :n; the i.i.d.
inter-arrival times are distributed as some r.v. V with P(0�V<∞)=1 and P(V>0)>0. The inter-
arrival times are then non-negative and not identically 0. The renewal function associated with the
non-delayed process is then finite on R+. It is denoted by �V with

�V (t)=E(NV ([0, t]))=E

( ∑
k∈N∗

1{V (1)+···+V (k)�t}

)

where V (1), . . . ,V (k), . . . are the successive inter-arrival times and if I is an interval with I⊂R+,

NV (I ) stands for the number of renewals in I .
In the case of a delayed renewal process withUi :n for delay and inter-arrival times still distributed

as V , the number of renewals on I is denoted by NUi :n ,V (I ).
To evaluate the respective value of each possible strategy, a cost function is considered, which

represents the mean total cost on some time interval [0, t]. It is denoted by CK ([0, t]) when
strategy K is used. Two types of costs are considered, with respective means CRK ([0, t]) and
CEK ([0, t]). The first cost CRK ([0, t]) corresponds to replacement costs: each solicitation of the
repair team is assumed to entail a fixed cost r (r�0). Each corrective and preventive replace-
ment involves a supplementary cost, respectively, c f and cp, to be added to r (0<cp�c f ). For
instance, the cost for preventive replacement of i units (0�i�n−1), which comes along with the
corrective replacement of one unit, is r+c f +icp. As for the other cost (or benefit) CEK ([0, t]),
we assume a constant rate per unit time, with a higher rate for an old-type unit (�+� with ��0,
�∈R) than for a new-type (�). Such a rate may include energy consumption and/or produc-
tion rate per unit time, e.g. The corresponding cost is called ‘energy consumption cost’ in the
following. The ‘energy consumption’ cost for j new-type units and k old-type units on [t1, t2] is
( j�+k(�+�)) (t2− t1) with 0�t1�t2 and j+k=n.

All components, both new-type and old-type, are assumed to be independent of each other.
In this paper, if X is a non-negative r.v., its cumulative density function (c.d.f.) is denoted by

FX , its survival function by F̄X with F̄X =1−FX and its eventual probability density function
(p.d.f.) by fX . For t ∈R+, we also set Xt =min(X, t).
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Finally, we shall use the following notations:

a = r+c f

cp
�1

b = �

cp
�0

and

x+ =max(x,0)

for any real x .

3. COST FUNCTIONS

We first compute the mean cost on [0, t] induced by strategy 0. Note contrary to strategy 1 or n,
strategy 0 is not a special case of general strategy K .

Proposition 1
The mean cost on [0, t] induced by strategy 0 is

C0([0, t])=n�t+r+ncp(1+a�V (t))

for all t�0.

Proof
The proof is very similar to that from [19], which we recall here for sake of completeness: when
strategy 0 is used, the cost on [0, t] is due to:

• the energy consumption of the n new-type units on [0, t], which is equal to

CE0([0, t])=n�t

• the preventive replacement of n components at time 0, which is equal to ncp+r ;
• the corrective replacements of the new-type units (among n), which fail on [0, t]: n(r+
c f )�V (t)=ncpa�V (t).

Hence the result. �

We now come to the general case with 1�K�n and we first consider the mean energy consump-
tion costs.

Lemma 2
For 1�K�n−1,

CEK+1([0, t])−CEK ([0, t]) = (n−K )�E(Ut
K+1:n−Ut

K :n)

= (n−K )cpbE(Ut
K+1:n−Ut

K :n)
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and for 1�K�n,

CEK ([0, t])=�(n−K )E(Ut
K :n)+�

K∑
i=1

E(Ut
i :n)+n�t

Proof
We may first note that the mixture of both types of components is the same before time UK :n and
after time UK+1:n for both strategies K and K +1. This implies that the difference of costs on [0, t]
between these two strategies is null when t<UK :n . We then restrict the study to the case t�UK :n and
calculate the difference of costs on [UK :n,Ut

K+1:n) where we recall that U
t
K+1:n =min(UK+1:n, t).

When t�UK :n , there are n new-type components when strategy K is applied, whereas there
are K new-type and n−K old-type ones for strategy K +1 on [UK :n,Ut

K+1:n). Consequently,
the corresponding difference of energy consumption costs is due to the difference in energy
consumption on [UK :n,Ut

K+1:n) of n−K components, which are old-type in strategy K +1, and
new-type in strategy K . We obtain

CEK+1([0, t])−CEK ([0, t]) = (n−K )�E((Ut
K+1:n−UK :n)1{UK :n�t})

= (n−K )�E(Ut
K+1:n−Ut

K :n)

and the first result.
Let us now compute CE1([0, t]): when strategy 1 is used, there are n old-type components up

to Ut
1:n and n new-type components on (Ut

1:n, t] (eventually empty if t�U1:n). We easily derive

CE1([0, t]) = E(n(�+�)Ut
1:n)+E(n�(t−Ut

1:n))

= n�E(Ut
1:n)+n�t

and the second result using

CEK ([0, t])=
K−1∑
i=1

(CEi+1([0, t])−CEi ([0, t]))+CE1([0, t])

and the reduction. �
We now look at the mean replacement costs.

Lemma 3
For 1�K�n,

CRK ([0, t]) = (r+c f )
K∑
i=1

[FUi :n (t)+E(�V ((t−Ui :n)+))]

+(n−K )[cpFUK :n (t)+(r+c f )E(�V ((t−UK :n)+))]
and for 1�K�n−1,

1

cp
(CRK+1([0, t])−CRK ([0, t])) = (a−1)FUK+1:n (t)+a(n−K )[E(�V ((t−UK+1:n)+))

−E(�V ((t−UK :n)+))]+(n−K )[FUK+1:n (t)−FUK :n (t)]
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Proof
The replacement costs induced by strategy K are due to:

• eventual corrective replacement at U1:n (if U1:n�t), . . . , at UK−1:n (if UK−1:n�t) of old-type
components, and corrective replacements of the new-type components eventually put into
activity at U1:n, . . . ,UK−1:n;

• if t�UK :n: the n−K preventive replacements at time UK :n and a corrective replacement;
• if t�UK :n: the corrective replacements of the n−K +1 new-type components put into activity

at UK :n .
We obtain

CRK ([0, t]) = (r+c f )

(
K−1∑
i=1

P(Ui :n�t)+
K−1∑
i=1

E(NUi :n ,V ([Ui :n, t])1{Ui :n�t})
)

+(r+c f +(n−K )cp)P(UK :n�t)

+(r+c f )(n−K +1)E(NUK :n ,V ([UK :n, t])1{UK :n�t}) (1)

We may now express

E(NUi :n ,V ([Ui :n, t])1{Ui :n�t})=E(g(Ui :n)) (2)

where

g(Ui :n) :=E(NUi :n ,V ([Ui :n, t])1{Ui :n�t}|Ui :n)

and E(. . . |Ui :n) stands for the conditional expectation given Ui :n .
With abusive but, however, usual notation, we have for all u∈R+:

g(u) = E(NUi :n ,V ([Ui :n, t])1{Ui :n�t}|Ui :n =u)

= E(Nu,V ([u, t])1{u�t}|Ui :n =u)

= E(Nu,V ([u, t])1{u�t})

due to independence between Ui :n and the renewal process with inter-arrivals distributed as V .
We derive

g(u)=E(NV ([0, t−u])1{u�t})=�V (t−u)1{u�t} =�V ((t−u)+)

and

E(NUi :n ,V ([Ui :n, t])1{Ui :n�t})=E(�V ((t−Ui :n)+))

due to (2). Hence, we obtain the first result using (1), from where we easily derive the second one,
after reduction. �

We now conclude this section with the following theorem, which is a direct consequence of
Lemmas 2 and 3 using CK ([0, t])=CEK ([0, t])+CRK ([0, t]).
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Theorem 4
Let t�0. For 1�K�n, we have

CK ([0, t]) =
K∑
i=1

[(r+c f )(FUi :n (t)+E(�V ((t−Ui :n)+)))+�E(Ut
i :n)]

+(n−K )[cpFUK :n (t)+(r+c f )E(�V ((t−UK :n)+))+�E(Ut
K :n)]+n�t

and setting

gK (t) := 1

cp
(CK+1([0, t])−CK ([0, t])) (3)

for 0�K�n−1, we have

gK (t) = (a−1)FUK+1:n (t)+(n−K )[bE(Ut
K+1:n−Ut

K :n)−(FUK :n (t)−FUK+1:n (t))

−aE(�V ((t−UK :n)+−�V ((t−UK+1:n)+)))] (4)

for 1�K�n−1 and

g0(t)=(a−1)FU1:n (t)+n[bE(Ut
1:n)− F̄U1:n (t)−aE(�V (t)−�V ((t−U1:n)+))]− r

cp

4. COMPARISON BETWEEN STRATEGIES 0,1, . . . ,n IN LONG-TIME RUN

In order to understand what are the possible minima of (CK ([0, t]))0�K�n for t fixed, we are
interested here in the comparison of CK ([0, t])’s in long-time run, namely when t→+∞. We first
compute the limit of gK (t) when t→+∞, where gK (t) is defined by (3).

Proposition 5
Assume the distribution of V to be non-arithmetic and E(Ui )<+∞ for all 1�i�n. Setting
gK (∞) := limt→+∞ gK (t) for all 0�K�n−1, we then have

gK (∞)=a−1+
(
b− a

E(V )

)
(n−K )E(UK+1:n−UK :n)<+∞

for all 1�K�n−1 and

g0(∞)= c f

cp
−1+

(
b− a

E(V )

)
nE(U1:n−U0:n)<+∞

where we set U0:n :=0.

Proof
We start from (4). Owing to Blackwell’s theorem and assumption on V , we know

lim
t→+∞(�V ((t−u)+)−�V ((t−v)+))= lim

t→+∞(�V (t−u)−�V (t−v))= v−u

E(V )

for all 0�u�v with 1/E(V )=0 if E(V )=+∞.
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Let 0�K�n−1. As 0�UK :n<UK+1:n<+∞ a.e. due to Ui<+∞ a.e., we derive

lim
t→+∞(�V ((t−UK :n)+)−�V ((t−UK+1:n)+))= UK+1:n−UK :n

E(V )

and the result, using limt→+∞ FUK :n (t)=1 and limt→+∞ E(Ut
K :n)=E(UK :n)<+∞ by monotone

theorem (the same for K +1). �

A first consequence is that, if b−a/E(V )�0 or alternatively ��(r+c f )/E(V ), we then have
gK (∞)�0 for all 0�K�n−1 (we recall that a�1 and c f �cp). Consequently, if ��(r+c f )/E(V ),
the best strategy among 0, . . . ,n in long-time run is strategy 0. Such a result conforms to the
intuition: indeed, let us recall that � stands for the additional energy consumption rate for the old-
type units compared with the new-type ones; also, we observe that (r+c f )/E(V ) is the cost rate
per unit time for replacements due to failures among new-type components in long-time run. Then,
the result means that if replacements of new-type components due to failures are less costly per
unit time than the benefit due to a lower consumption, it is better to replace old-type components
by new-type ones as soon as possible.

Now, we have to look at the case b−a/E(V )<0 and for that, we have to study the monotony of

DK :=(n−K )(UK+1:n−UK :n)

with respect to K , where DK is the K th normalized spacing of the order statistics (U1:n, . . . ,Un:n),
see, for example, [23, 24].

With that aim, we now put some assumption on the distributions of the residual lifetimes of
the old-type components at time t=0 (Ui for 1�i�n), from where we shall induce properties
for (DK )0�K�n . Without any additional knowledge, a natural hypothesis is to assume that the i th
unit has already been replaced a large number of times. Assuming such replacement times for the
i th unit to make a renewal process with inter-arrival times distributed as some U (0) (independent
of i), the residual life at time 0 for the i th unit may then be considered as the waiting time until
next arrival for a stationary renewal process with inter-arrivals distributed as U (0). Such a waiting
time is known to admit as p.d.f. the function fU (t) such that

fU (t)= F̄U (0) (t)

E(U (0))
1R+(t) (5)

in the case 0<E(U (0))<+∞. We consequently assume that Ui admits such function fU (t) as
p.d.f. in the following.

Under such assumption, it is well known that U is exponentially distributed if and only if U (0)

has the same property. Similarly, it is also well known that D1, . . . ,Dn are i.i.d. if and only if the
underlying distribution for U is exponential. As a consequence, D1, . . . ,Dn are i.i.d. if and only
if the distribution of U (0) is exponential. In particular, the sequence (gK (∞))1�K�n is constant
when U (0) is exponentially distributed; hence, (gK (∞))1�K�n has a constant sign. This implies
that the optimal strategy among 1, . . . ,n can be only strategy 1 or n in long-time run, result already
proved for a finite horizon in [19].

When U (0) is not exponentially distributed; hence neither U , we now use a result from [23]
according to which, if U1, . . . ,Un are i.i.d. increasing failure rate (IFR) r.v. with FUi (0)=0, then
the successive normalized spacings (DK )0�K�n associated withUi ’s are stochastically decreasing.

We first prove that the IFR property of U (0) is passed on to U .
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Lemma 6
Assume U (0) to be a non-negative IFR r.v. with 0<E(U (0))<+∞ and U to be a continuous r.v.
with p.d.f. given by (5). Then U is also IFR.

Proof
As U admits some density function, we may use its associated hazard rate function hU (t) to prove
its IFR property, with

hU (t)= fU (t)

F̄U (t)
= F̄U (0) (t)∫ +∞

t F̄U (0) (u)du
= F̄U (0) (t)∫ +∞

0 F̄U (0) (t+u)du

for t�0 such that F̄U (t)>0, or equivalently for t�0 such that F̄U (0) (t)>0. We then have to prove
that hU (t) is increasing with t on {t�0 : F̄U (0) (t)>0}. Now, let 0�t1<t2 be such that F̄U (0) (t2)>0
(hence F̄U (0) (t1)>0). We have to prove that hU (t1)�hU (t2) or alternatively that

F̄U (0) (t1)∫ +∞
0 F̄U (0) (t1+u)du

� F̄U (0) (t2)∫ +∞
0 F̄U (0) (t2+u)du

This may also be expressed as∫ +∞

0

(
F̄U (0) (t2+u)

F̄U (0) (t2)
− F̄U (0) (t1+u)

F̄U (0) (t1)

)
du�0

which is true and allows to conclude, becauseU (0) is assumed to be IFR so that F̄U (0) (t+u)/F̄U (0) (t)
is decreasing in t for all u>0. �

We are now ready to state our result.

Theorem 7
If b−a/E(V )�0, the optimal strategy among 0, . . . ,n in long-time run is strategy 0.
In the case b−a/E(V )<0, assume that U (0) is a non-negative IFR r.v. with 0<E(U (0))<+∞ and
that U is a continuous r.v. with p.d.f. given by (5). Assume beside that U (0) is not exponentially
distributed. The sequence (E(DK ))0�K�n−1 is then strictly decreasing, and setting

c := a−1

a/E(V )−b
and d := c f /cp−1

a/E(V )−b
�c

one of the following cases occurs:

• if c�E(Dn−1): the optimal strategy among 0, . . . ,n in long-time run is strategy n;
• if c>E(D1):

◦ if d>E(D0): the optimal strategy among 0, . . . ,n in long-time run is strategy 0;
◦ if d�E(D0): the optimal strategy among 0, . . . ,n in long-time run is strategy 1;

• if E(DK0)<c�E(DK0−1) for some 2�K0�n−1: the optimal strategy among 0, . . . ,n in long-
time run is strategy K0.

Copyright q 2008 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2008; 24:221–235
DOI: 10.1002/asmb



OPTIMAL REPLACEMENT POLICY FOR OBSOLETE COMPONENTS 231

Remark 8
The results of the previous theorem are valid as soon as U1, . . . ,Un are i.i.d. IFR. Apart from the
natural assumption on Ui ’s described just above, another possibility to meet with this assumption
would be that the old-type components had been put into activity simultaneously (with IFR
lifetimes).

Proof
As already mentioned just after Proposition 5, the case b−a/E(V )�0 is clear and we consider
only the case b−a/E(V )<0. In that case, we have for 1�K�n−1:

(gK (∞)<0)⇐⇒(c<E(DK ))

and (g0(∞)<0)⇐⇒(d<E(D0)).
Owing to assumptions on U (0) and U , we know from Lemma 6 that U1, . . . ,Un are i.i.d. IFR r.v.

with FUi (0)=0. Using the recalled result from [23], we derive that (DK )0�K�n is stochastically
decreasing with K so that (E(DK ))0�K�n is decreasing, and actually strictly decreasing as soon
as U (0) is not exponentially distributed.

Then, if c<min1�K�n−1 E(DK )=E(Dn−1), we know that gK (∞)<0 for all 1�K�n−1 and
Sopt1:n =n with clear notations. Beside, d�c<E(Dn−1)<E(D0), so that Sopt0:1 =1. We derive Sopt0:n =n.

The case c>E(D1) is similar and omitted.
Now assume E(DK0)<c�E(DK0−1) for some 2�K0�n−1. We then have

g1(∞)< · · ·<gK0−1(∞)�0<gK0(∞)<gK0+1(∞)< · · ·<gn−1(∞)

and consequently Sopt1:n =K0. Beside, d�c�E(DK0−1)<E(D0) and g0(∞)<0. We derive Sopt0:1 =1

and Sopt0:n =K0. �

Recall that we had proved in [19] the following ’dichotomy’ property: in the case of constant
failure rates, only strategies purely preventive (0), nearly purely preventive (1) or purely corrective
(n) can be optimal for finite horizon. We now know from Theorem 7 that such a property is not
valid anymore in the case of general failure rates, at least for infinite horizon and consequently
for large t .

For smaller t , some results from the long-time run are still valid. In this way, under the assump-
tions of Lemma 6, setting (Ut )K :n to be the K th order statistic of (Ut

1, . . . ,U
t
n) one may prove that

E(Dt
K ) :=(n−K )E(Ut

K+1:n−Ut
K :n)=(n−K )E((Ut )K+1:n−(Ut )K :n) is still decreasing, because

Ut is still IFR. However, this observation seems to be quite insufficient to lead the study of the
monotony of (gK (t))0�K�n up to its end. Consequently, it seems difficult to find the optimal
strategy from a theoretical point of view for smaller t .

We consequently observe numerically in the following section the behavior of (CK ([0, t]))0�K�n
with respect to K for t ‘not too large’.

5. NUMERICAL EXPERIMENTS

All the computations are here made with Matlab.
We assume that U (0) is Weibull distributed (W (�1,�1)) with survival function:

F̄U (0) (x)=e−�1x�1
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where �1>0 and �>1 (U (0) is IFR). We then take U with p.d.f. given by (5):

fU (x)= e−�1x�1

E(U )
1R+(x)= �

1/�1
1

�

(
1+ 1

�1

)e−�1x�11R+(x)

so that

FU (x)=
∫ x

0

�
1/�1
1

�

(
1+ 1

�1

)e−�1u�1 du=�inc

(
�1x

�1,
1

�1

)
(6)

for all x�0 after reduction, where �inc is the incomplete Gamma function. This function is
implemented in Matlab, so that FU and F̄U are easy to compute from (6).

We derive FUK :n using

FUK :n (x) =
∫ FU (x)

0

n!
(K −1)!(n−K )! t

K−1(1− t)n−K dt

= IFU (x)(K ,n−K +1)

for 1�K�n, where Ix (n1,n2) is the incomplete Beta function (also implemented in Matlab), see,
for example, [25] for the results on order statistics used in this section.

We also use

F̄UK+1:n (t)− F̄UK :n (t)=
( n

K

)
FK
U (t)F̄n−K

U (t)

from where we derive E(Ut
K+1:n−Ut

K :n) due to

E(Ut
K+1:n−Ut

K :n)=
∫ t

0
(F̄UK+1:n (u)− F̄UK :n (u))du

for 0�K�n−1 (we recall U0:n :=0).
We finally compute E(�V ((t−UK :n)+)) with

E(�V ((t−UK :n)+)) =
∫ t

0
�V (t−u)d fUK :n (t)

= n

(
n−1

K −1

)∫ t

0
�V (t−u)FK−1

U (u)F̄n−K
U (u) fU (u)du

where the renewal function �V is computed via the algorithm from [26], which here ensures a
relative precision less than 3.5×10−4 (with the numerical data given just below).

We assume V to be Weibull distributed W (�2,�2) and we take

�1= 1

103
, �1=2.8, �2= 1

2×103
, �2=3.2

so that E(U (0))	10.50 and E(V )	9.63.
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Table I. Optimal strategy according to t and �.

t\� 0 0.04 0.05 0.06 0.07 0.08 0.09 0.095 0.0975 0.1 0.2

5 10 10 10 10 10 10 10 10 10 10 0
10 10 10 10 10 3 3 2 2 2 2 0
15 10 7 7 7 6 6 6 5 5 5 0
20 10 9 9 8 8 4 2 1 1 1 0
25 10 8 8 7 6 5 4 3 3 2 0
30 10 9 8 7 7 5 3 2 2 1 0
35 10 9 8 7 6 5 4 3 2 1 0
100 10 9 8 7 6 5 4 3 2 1 0
∞ 10 9 8 7 6 5 4 3 2 1 0

0 10 20 30 40
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2

4

6

8

10

t

ygetart
Sl a

mit p
O

Figure 1. Optimal strategy with respect to t for �=0.095.

We also take

n=10, �=0, cp =5, c f =7, r =4

For finite horizon, the optimization on K is simply made by computing all CK ([0, t]) for
K =0, . . . ,n and finding the smallest. For infinite horizon, Theorem 7 is used.

The optimal strategy is given in Table I for different values of � and t , as well as the asymptotic
results.

We can see in such a table that the optimal strategy is quickly stable with increasing t . More
precisely, the optimal strategy for a finite horizon t is the same as the optimal strategy in long-time
run as soon as t is greater than about 3.5 mean lengths of life of a component. (Note that we here
have E(U (0))	E(V )	10.)

We now plot in Figure 1 the optimal strategy with respect to t for some fixed � (�=0.095). We
can see in such a figure that the behavior of K opt (optimal K ) with increasing t is not regular.
There is consequently no hope to get any clear characterization of K opt with respect to the different
parameters in finite horizon as we had in the exponential case in [19] and as we have here in
infinite horizon (Theorem 7).
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Figure 2. Optimal strategy with respect to � for t=15.

We finally plot K opt for t fixed (t=15) with respect to �, which shows that K opt may vary a
lot changing one single parameter (Figure 2).

6. CONCLUSION

In conclusion, the behavior of (CK ([0, t]))0�K�n with K is much less regular in the present case
of general failure rates than in the case of constant failure rates as in [18, 19]. Also, the main result
from [19], which shows that the optimal strategy could be only strategy 0, 1 or n, is here false.
It does not seem possible here to give clear conditions on the data to foretell which strategy is
optimal in finite horizon as was done in [19]. We, however, obtained such conditions in long-time
run. A few numerical experiments (adding to those given here) seem to indicate that the optimal
strategy in long-time run actually is quickly optimal, namely for t not that large. The results for
long-time run then seem to give a good indication for the choice of the best strategy, even for t
not very large.
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